Research Articles: Behavioral/Cognitive

Family Cohesion Moderates the Relation between Parent-Child Neural Connectivity Pattern Similarity and Youth's Emotional Adjustment

https://doi.org/10.1523/JNEUROSCI.0349-23.2023

Cite as: J. Neurosci 2023; 10.1523/JNEUROSCI.0349-23.2023

Received: 26 February 2023 Revised: 5 June 2023 Accepted: 6 June 2023

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2023 the authors

	1	
	2	
ىب	2	
Q	3	
	4	
osci Accepted Manuscript	5	Family Cohesion Moderates the Relation between Parent-Child Neural Connectivity
S	6	Pattern Similarity and Youth's Emotional Adjustment
\square		
C	7	
	8	Zexi Zhou ^a
D	9 10	zexi znou zexi.zhou@utexas.edu
	10	Zexi.Zilou@utexas.edu
	12	Ya-Yun Chen ^b
	13	yayunchen@vt.edu
	14	,,,
Q	15	Beiming Yang ^c
	16	beiming@u.northwestern.edu
سب	17	
Ó	18	Yang Qu ^c *
	19	yangqu@northwestern.edu
	20	Tae-Ho Lee ^b *
$\tilde{\mathbf{O}}$	21 22	tae-Ho Lee ** taehol@vt.edu
	22	taenoi@vi.edu
\mathbf{O}	23	
	25	
	26	
	27	^a Department of Human Development and Family Sciences, The University of Texas at Austin,
\mathbf{O}	28	108 E. Dean Keeton St., Austin, TX, 78712, United States
	29	^b Department of Psychology, Virginia Tech, 809 Williams Hall, Blacksburg, VA, 24061, United
\mathbf{O}	30	States
\mathbf{O}	31	^c School of Education and Social Policy, Northwestern University, 2120 Campus Dr., Evanston,
	32	IL, 60208, United States
	33 34	
	34	*Corresponding author
	36	
JNeur	37	Acknowledgements: This work was supported through a research award by the Virginia Tech
	38	Institute for Society, Culture and Environment, the National Science Foundation (BCS 1944644)
	38 39	and the Center for Culture, Brain, Biology, and Learning at Northwestern University.
	57	and the center for culture, Brain, Biology, and Learning at Northwestern University.

1

Abstract

41 Despite a recent surge in research examining parent-child neural similarity using fMRI, there 42 remains a need for further investigation into how such similarity may play a role in children's 43 emotional adjustment. Moreover, no prior studies explored the potential contextual factors that 44 may moderate the link between parent-child neural similarity and children's developmental 45 outcomes. In this study, thirty-two parent-youth dyads (parents: $M_{age} = 43.53$ years, 72% female; 46 children: $M_{age} = 11.69$ years, 41% female) watched an emotion-evoking animated film while 47 being scanned using the functional magnetic resonance imaging (fMRI). We first quantified how similarly emotion network interacts with other brain regions in responding to the emotion-48 49 evoking film between parents and their children. We then examined how such parent-child 50 neural similarity is associated with children's emotional adjustment, with attention to the 51 moderating role of family cohesion. Results revealed that higher parent-child similarity in 52 functional connectivity pattern during movie viewing was associated with better emotional 53 adjustment including less negative affect, lower anxiety, and greater ego resilience in youth. 54 Moreover, such associations were significant only among families with higher cohesion, but not 55 among families with lower cohesion. The findings advance our understanding of the neural mechanisms underlying how children thrive by being in sync and attuned with their parents, and 56 57 provide novel empirical evidence that the effects of parent-child concordance at the neural level 58 on children's development are contextually dependent. 59 Keywords: connectivity pattern similarity; emotion; family; neural similarity; parent-child dyad

61	Significance Statement
62	What neural processes underlie the attunement between children and their parents that
63	helps children thrive? Using a naturalistic movie-watching fMRI paradigm, we find that greater
64	parent-child similarity in how emotion network interacts with other brain regions during movie
65	viewing is associated with youth's better emotional adjustment including less negative affect,
66	lower anxiety, and greater ego resilience. Interestingly, these associations are only significant
67	among families with higher cohesion, but not among those with lower cohesion. Our findings
68	provide novel evidence that parent-child shared neural processes to emotional situations can
69	confer benefits to children, and underscore the importance of considering specific family
70	contexts in which parent-child neural similarity may be beneficial or detrimental to children's
71	development, highlighting a crucial direction for future research.
72	

73

JNeurosci Accepted Manuscript

74	Introduction
75	Starting very early in life, children and their parents strive to develop attuned similarities
76	at multiple levels as they serve as a foundation for children to navigate the complex world and
77	resourcefully respond to the changing environment (Wheatley et al., 2012; Ainsworth et al.,
78	2015). Drawing on extensive research on parent-child similarity at the behavioral, emotional, and
79	physiological levels (e.g., Feng et al., 2007; Davis et al., 2017; DePasquale, 2020), an increasing
80	literature provides evidence for the concordance between parents' and children's brain activities
81	(e.g., EEG: Wang et al., 2018; fNIRS: Nguyen et al., 2020; Reindl et al., 2022) and suggests the
82	protective role of such dyadic neural similarity in children's adjustment (e.g., lower stress, lower
83	irritability, and better sleep quality; fMRI: Lee et al., 2017a, 2018; fNIRS: Quiñones-Camacho et
84	al., 2020). Yet, only limited research investigated how parent-child neural similarity may be
85	associated with children's emotional adjustment (Qu et al., 2023). More importantly, no prior
86	research considered the moderating role of family contexts in the links between parent-child
87	neural similarity and children's development. Therefore, it is important to understand under what
88	circumstances can parent-child neural similarity be beneficial to child development.
89	Parent-child neural similarity may not only provide a basis for children to form affiliative
90	bonds and enduring attachment with their parents (Feldman, 2012; Davis et al., 2018), but also
91	facilitate children's acquisition of emotional processing and regulating capacities through shared
92	emotion-related processes with their parents (Atzil et al., 2014; Atzil & Gendron, 2017). Indeed,
93	prior research found that neural profile similarity measured by parent-child resting-state
94	connectome pattern was related to children's greater emotional competence (Lee et al., 2017b).
95	Similarly, real-time brain-to-brain synchrony was associated with children's adaptive emotion

96 regulation (Reindl et al., 2018), and greater functional connectivity between parents' and youth's

brains (cross-brain connectivity, CBC) during interactions was associated with fewer depressive
symptoms (Ratliff et al., 2021). Drawing on this line of research, parent-child neural similarity
may also play a role in other aspects of children's emotional adjustment such as affective states
(e.g., mood and anxiety) and abilities to recover from stressful events in life (i.e., ego resilience;
Block & Kremen, 1996).

102 Moreover, scholars have suggested that parent-child physiological similarity may not 103 always be promotive and protective, especially in negative family contexts (Creavy et al., 2020). 104 However, no empirical studies to date explored whether the effects of parent-child neural 105 similarity on children's adjustment may also vary across family contexts. For example, when 106 there is higher emotional bonding and support between family members, similar neural processes 107 in parent-child dyads may be more likely to transform into better parent-child communication 108 and co-regulation processes in stressful situations, which can ultimately promote children's 109 emotional well-being (Lindsey et al., 2009; Lunkenheimer et al., 2020). In contrast, when the 110 family involves more negative interactions and emotional exchanges, parent-child neural 111 similarity may not easily contribute to children's emotional adjustment. Therefore, children may 112 benefit more from their neural attunement with their parents in positive family environments. 113 The current study aimed to examine the relations between parent-child neural similarity 114 and children's emotional adjustment, and investigate whether family cohesion plays a 115 moderating role in such relations. Compared with other neuroimaging techniques, functional 116 magnetic resonance imaging (fMRI) has high spatial resolution, allowing researchers to pinpoint 117 the precise location of brain activity. Moreover, beyond examining the regions of the cortex, 118 fMRI has the capability to investigate neural activity in subcortical regions (e.g., amygdala) that 119 play an important role in emotional processing, which is particularly useful when studying

120	complex neural processes that involve multiple brain regions in response to emotional stimuli.
121	Therefore, in the current study, both parents and their youth were scanned using fMRI when
122	watching a movie – a naturalistic paradigm designed to evoke rich emotional processes. In
123	particular, we focused on how similarly emotion network interacts with other regions at the
124	whole-brain level (i.e., seed-based whole brain connectivity similarity) to understand or respond
125	to emotional situations between parents and their children. The brain expertly orchestrates its
126	response to environmental stimuli by concurrently coordinating and synchronizing a multitude of
127	operations within and across distinct brain regions and networks, akin to a harmonious orchestra
128	(Buzsáki & Draguhn, 2004; Buzsáki, 2006). In other words, a given neural process is not strictly
129	confined to a single region or network; Rather, it depends on the ability of the primary region or
130	network associated with a particular task demand to allocate neural resources and communicate
131	effectively with external regions and networks beyond the central one, ultimately facilitating
132	task-specific processes. Therefore, we examined parent-child similarity in how the emotion
133	network drives the use of neural resources during the information processing in the brain (e.g.,
134	Kim-Spoon et al., 2023). Drawing on prior research (e.g., Lee et al., 2017b; Reindl et al., 2018;
135	Birk et al., 2022), we hypothesized that greater parent-child similarity in how emotion network
136	interacts with other brain regions during movie viewing would be associated with less negative
137	affect, lower anxiety, and greater ego resilience in youth. Moreover, we expected that the
138	associations between parent-child neural similarity and youth's negative affect, anxiety, and ego
139	resilience would be more salient among families with greater cohesion, but not among families
140	with lower cohesion.

141

Methods

142 **Participants and Procedures**

143	Participants were recruited by distributing flyers on Facebook groups, publishing
144	advertisements in newspapers, and utilizing local media. Participants were recruited from the
145	New River Valley area, Virginia, without genders and races/ethnicities restriction. All
146	participants provided written informed consent and the study protocol was approved by the
147	Institutional Review Board of Virginia Tech. Participants were excluded if they did not meet the
148	safety standards in the MRI screening form. Exclusion criteria consist of the following:
149	claustrophobia, history of head injury resulting in loss of consciousness for more than 10 minutes,
150	orthodontia impairing image acquisition, severe psychopathology (e.g., psychosis), and other
151	contraindications to MRI (e.g., pacemaker, aneurysm clips, neurostimulators, cochlear implants,
152	metal in eyes, steel worker, or other implants). All exclusion criteria were assessed through self-
153	report.
154	The final sample included thirty-two parent-youth dyads participated in this study
155	(parents: $M_{age} = 43.53$ years, $SD = 7.30$, range = 30–64, 72% female; youth: $M_{age} = 11.69$ years,
156	SD = 2.80, range = 8–17, 41% female). Each parent was either mother or father who self-
157	identified as the primary caregiver of their adolescent children. Among all parents, 94% were
158	biological parents and 6% were adoptive parents. Regarding participants' race and ethnicity, 69%
159	of youth self-identified as non-Hispanic White American, 16% as Hispanic American, 12% as
160	non-Hispanic Asian American, 3% as non-Hispanic Black or African American; 81% of parents
161	self-identified as non-Hispanic White American, 3% as Hispanic American, 13% as non-

162 Hispanic Asian American, 3% as non-Hispanic Black or African American. Youth first

163 completed self-reported measures on family cohesion, negative affect, anxiety, and ego

164 resilience. Both youth and their parents underwent a resting-state fMRI scan, followed by a

165 movie watching fMRI scan.

166

167 instructed to view an animated film named "Sonder" (14'53", 168 https://www.youtube.com/watch?v=3Cav2Uc 7Cs) during the scan. The movie focuses on the 169 theme of emotional self-discovery and the various range of emotions including happiness, 170 sadness, confusion, and potentially even a sense of growth, that the main character experiences 171 following the end of a significant relationship. The main character's emotions are depicted 172 through actions, facial expressions, situations, as well as through symbolic representations and 173 visual imagery. The movie was assumed to require participants' ability to understand diverse 174 emotions as it used several symbolic representations conveying emotion and meaning. For 175 example, the plant was used as a symbol to represent the emotional journey of the main 176 character, and the different states of various flowerpots were employed to illustrate the changes 177 and evolution of main character's significant relationship. The goal of using this affect-rich movie in our study was not to determine the accuracy of the participants' ability to interpret 178 179 emotions through symbolic representations, but rather to see how similar parent-child pairs 180 process and perceive the movie in their brains. 181 fMRI Data Acquisition and Analyses

Movie watching during the scan. The participants, both parents and youth, were

182Data acquisition and preprocessing. All MRI data were acquired on a Siemens 3T183PRISMA with a 64-channel matrix head coil located in Fralin Biomedical Research Institute at184Virginia Tech Carilion. High-resolution T1 (repetition time or TR = 2.5 s; echo time or TE =1852.06 ms; FA = 8°; 1 mm isotropic voxel; field of view or FoV = 256 mm) and T2 (TR = 3.2 s;186TE = 563 ms; FA = 120°; 1 mm isotropic voxel; FoV = 256 mm) anatomical images were187acquired for tissue segmentation (GM, WM and CSF mask) and normalization. Functional

188 images for the movie watching (393 volumes) and resting state (360 volumes) were acquired

189	with gradient-echo echo-planar T2*-weighted imaging sequence (TR = 2 s; TE = 25 ms; FA =
190	90° ; 2.5 x 2.5 mm resolution; 37 interleaved 3.0 mm slices with 0.3 mm gap; FoV = 92 mm).
191	Preprocessing was performed using the FMRIB Software Library (FSL; Jenkinson et al., 2012),
192	ICA-AROMA toolbox (Pruim et al., 2015), and ANTs library (Avants et al., 2009). The
193	excessive motion was identified based on an average of 0.5 mm frame displacement, and no
194	participants were excluded. Aggressive ICA-AROMA was utilized for physiological noise
195	correction, given its proven efficacy in eliminating physiological fluctuations in the absence of
196	simultaneous recordings (Scheel et al., 2022). Preprocessing for the movie watching session
197	included the first two volumes cut, high pass filter (128 s; 0.0078 Hz), motion correction (mean
198	relative motion = 0.1012 mm; mean absolute motion = 0.975 mm), 5-mm smoothing, slice-
199	timing correction, grand-mean intensity normalization, ICA denoising (corrected FD mean =
200	0.026 mm; corrected DVAR mean = 5.897) and registration to standard MNI 2-mm brain
201	template. Preprocessing for the resting-state was identical but included bandpass filter (0.001-
202	0.08 Hz) with mean CSF/WM signal as nuisance regressors extracted within individually
203	segmented masks at 90% threshold), the first ten volumes cut, and ICA denoising (mean relative
204	motion = 0.106 mm; mean absolute motion = 0.679 mm; corrected FD mean = 0.030 mm;
205	corrected DVAR mean = 6.226).
206	Estimation of parent-child neural connectivity pattern similarity with emotion
207	network seed. The primary interest of the current study was how similarly emotion network
208	interacts with other brain regions to understand or respond to emotional situations between
200	ware to and their shildren. To this and see first action to down this materials and have d

209 parents and their children. To this end, we first estimated emotion network seed-based

210 connectivity maps for each individual using a priori network seed (e.g., Lee et al., 2019),

selected based on the union of association and uniformity inference maps (e.g., Woo et al., 2014)

212	associated with 'emotions' and 'emotional response' terms at $Z = 5.2$ threshold level from the
213	automated large-scale meta-analytic database of more than 444 published neuroimaging studies
214	(http://neurosynth.org; Yarkoni et al., 2011), yielding various regional voxels including
215	amygdala (L: x = -22, y = 2, z = -23; R: x = 23, y = -1, z = -24), temporal pole (L: x = -50, y = 2, z = -23), temporal pole (L: x = -50, z = -23), temporal pole (L: x = -50), y = 2, z = -23
216	z = -24; R: $x = 23$, $y = -1$, $z = -24$), frontral orbital cortex (R: $x = 44$, $y = 28$, $z = -10$), inferior
217	frontal gyrus (R: $x = 52$, $y = 29$, $z = 2$), frontal pole (L: $x = -8$, $y = 60$, $z = 32$), insula (L: $x = -37$,
218	y = -4, z = -6), temporal fusiform gyrus (R: x = 43, y = -52, z = -17) thalamus (L: x = -1, y = -26, z = -17) thalamus (L: x = -1, y = -26) thalamus (L: x = -26) thalamus (L: x = -1, y = -26) thalamus (L: x = -2
219	z = 2), and anterior cingulate cortex ($x = 7$, $y = 44$, $z = 8$). The reported coordinates are based on
220	the highest Z value within the Harvard-Oxford Atlas. The seed-based connectivity estimation
221	was done by FSL's dual regression function with the seed network mask.
222	It is worth noting that our examination focused on how the emotion network regions
223	interacted with other brain regions at the whole-brain level involved in comprehending the movie,
224	rather than on the connections within the emotion network. After estimating the connectivity

10

maps using the emotional network seed, we calculated the pattern similarity across all voxels at the whole brain level, which included all possible regional voxels. We then vectorized functional connectivity maps across all possible voxels and calculated the connectivity pattern similarity between parents and their children based on the cosine similarity. The cosine similarity is the cosine of the angle formed between two vectors, and the patterns are considered to be more

230 similar if the cosine coefficient is close to 1 (Dimsdale-Zucker & Ranganath, 2018; Lee et al.,

231 2019; Figure 1).

In order to confirm that the findings are specific to the connectivity between emotion network and other brain regions in responding to the emotional movie, and not due to general parent-child similarity, we further repeated the analyses with two other types of connectivity.

235 Specifically, we examined how similarly motor network interacts with other brain regions in 236 responding to the emotional movie between parents and children, using a motor network seed 237 obtained from NeuroSynth (2565 studies associated with 'motor' term) for the movie watching 238 fMRI data. We also examined how similarly emotion network interacts with other brain regions 239 during *resting state* between parents and children, using the same emotion network seed for the 240 resting-state data. By comparing the main results with these two controls, we aimed to determine 241 the specificity of our findings and demonstrate that the observed dyadic effects are truly specific 242 to the emotion-related processing in the brain.

243 Psychological Measures

244 Family cohesion. Family cohesion was assessed using the 10-item Cohesion subscale of 245 the Family Adaptation and Cohesion Evaluation Scales II inventory (FACE II; Olson et al., 246 1979). Youth rated how often they felt a certain way or did certain things with the participating 247 parent (i.e., mother or father) on a five-point Likert scale from 1 (almost never) to 5 (almost 248 always). Example items included "My mother/father and I are supportive of each other during 249 difficult times" and "My mother/father and I like to spend our free time with each other". The 250 item scores were averaged, so that higher mean scores reflected greater family cohesion and 251 relationship closeness with parents ($\alpha = .84$).

252 **Youth's negative affect.** Youth's negative affect was measured using the 14 negative 253 affect items from the Positive and Negative Affect Schedule (PANAS; Crawford & Henry, 2004; 254 Hughes & Kendall, 2009). Youth indicated the extent to which they had felt each of the 14 255 negative affects (e.g., irritable, afraid, distressed, ashamed) during the past few weeks on a five-256 point Likert scale from 1 (*slightly/not at all*) to 5 (*extremely*). The mean score of the items was 257 taken with higher values reflecting youth's greater negative affect ($\alpha = .90$).

Youth's anxiety. Youth's anxiety was assessed using the Revised Children's Manifest Anxiety Scale (RCMAS; Reynolds & Richmond, 1978). For 25 items, youth rated how often they had the feelings described by each item in the past week (e.g., "I got nervous when things did not go the right way" and "It was hard for me to get to sleep at night") on a five-point Likert scale ranging from 0 (*never*) to 4 (*very often*). The item scores were averaged with higher mean scores indicating youth's greater anxiety ($\alpha = .93$).

Youth's ego resilience. Youth's ego resilience was measured using the six-item Brief Resilience Scale (BRS; Smith et al., 2008). Youth responded to each item (e.g., "I tend to bounce back quickly after hard times" and "I usually come through difficult times with little trouble") on a five-point Likert scale ranging from 1 (*strongly disagree*) to 5 (*strongly agree*). The item scores were averaged, so that higher mean scores indicated youth's greater ego resilience and ability to bounce back from stress ($\alpha = .87$).

270 Analytic Plan

271 Descriptive statistics of the sample and psychological variables were performed prior to 272 the primary analyses (Table 1). To examine the hypotheses, two sets of general linear regression 273 models were conducted with 5,000 bootstrapping resampling at a 95% confidence interval. The 274 first set of analyses examined how parent-child similarity in the connectivity between emotion 275 network and other brain regions during movie viewing is related to youth's emotional 276 adjustment. Specifically, youth's negative affect, anxiety, and ego resilience were predicted by 277 parent-child movie-evoked neural similarity of emotion network seed-based connectivity in three 278 separate models. The second set of analyses investigated the moderating role of family cohesion 279 in the links between parent-child neural similarity and youth's emotional adjustment. Three 280 moderation models were tested with youth's negative affect, anxiety, and ego resilience as the

outcome variable, respectively (Hayes, 2012). Simple slope analyses were then used to probe all
 significant interaction effects.

13

283 In addition, to control for the possible confounding effects of participants' demographic 284 characteristics, we rerun all models after adjusting for parents' age, parents' biological sex (0 =285 male, 1 = female), parents' educational attainment (0 = less than bachelor's degree, 1 = 1286 *bachelor's degree or above*), youth's age, youth's biological sex (0 = male, 1 = female), youth's 287 race/ethnicity (0 = non-Hispanic White, 1 = racial/ethnic minority), and psychotropic 288 medications (0 = neither the parent or the child was taking psychotropic medications, <math>1 = the289 parent or the child was taking psychotropic medications) as covariates. There was one child who 290 was taking psychotropic medications in our sample. After excluding this parent-child dyad, all 291 results remained the same patterns using the remaining 31 parent-child dyads. Finally, to ensure 292 the results were specific to parent-child neural similarity in the connectivity between emotion 293 network and other brain regions during movie viewing, we reperformed the two sets of analyses 294 to examine the connectivity between *motor* network and other brain regions during movie 295 viewing and the connectivity between emotion network and other brain regions during *resting* 296 state. All analyses were performed using SPSS 25.0. 297 Results

298 Parent-child Neural Similarity and Youth's Emotional Adjustment

The first set of analyses was to examine whether parent-child similarity in the functional connectivity between emotion network and other brain regions during movie viewing was associated with youth's emotional adjustment, including negative affect, anxiety, and ego resilience. Results showed marginally significant associations between parent-child connectivity pattern neural similarity and youth's negative affect as well as anxiety. That is, the greater parent-

during movie viewing, the less youth showed negative affect ($\beta = -.34$, p = .06, model $R^2 = .11$) 305 and anxiety ($\beta = -.35$, p = .05, model $R^2 = .12$). In a similar vein, such heightened parent-child 306 307 neural similarity during movie viewing was related to youth's greater ego resilience ($\beta = .46$, p = .008, model $R^2 = .21$). 308

309 As shown in Table 2, the associations remained the same after adjusting for parents' age, 310 biological sex, educational attainment, youth's age, biological sex, race/ethnicity, and parent or child psychotropic medications (for negative affect, $\beta = -.37$, p = .04, model $R^2 = .35$; for 311

anxiety, $\beta = -.33$, p = .08, model $R^2 = .28$; for ego resilience, $\beta = .41$, p = .03, model $R^2 = .33$). In 312 contrast, parent-child similarity in how motor network interacts with other brain regions during 313 314 movie viewing or how emotion network interacts with other brain regions during resting state 315 was not related to youth's emotional adjustment outcomes, with or without the demographic

316 covariates, ps > .26.

317

The Moderating Role of Family Cohesion

318 The second set of analyses was to investigate whether the link between parent-child 319 movie-evoked neural similarity of emotion network seed-based connectivity and youth's 320 emotional adjustment may vary among families with higher versus lower levels of cohesion. 321 Results revealed that family cohesion significantly moderated the effects of such parent-child neural similarity on youth's negative affect ($\beta = -.43$, p = .01, model $R^2 = .35$), anxiety ($\beta = -.43$, 322 p = .02, model $R^2 = .31$), and ego resilience ($\beta = .36$, p = .03, model $R^2 = .37$). Simple slope 323 324 analyses were further conducted to examine the associations between parent-child neural 325 similarity and the three emotional adjustment outcomes for youth who reported high (i.e., 1 SD 326 above the mean) versus low (i.e., 1 SD below the mean) levels of family cohesion. As shown in

327

328

329

330

Figure 2 and 3, for youth who reported high levels of family cohesion, greater parent-child
similarity in how emotion network interacts with other brain regions during movie viewing was
associated with youth's lower negative affect (standardized simple slope = 14 , $p = .002$), less
anxiety (standardized simple slope = 17 , $p = .002$), and higher ego resilience (standardized

simple slope = .15, p = .03). However, for youth who reported low levels of family cohesion,

332 such parent-child neural similarity was not associated with youth's negative affect (standardized

simple slope = .05, p = .30), anxiety (standardized simple slope = .05, p = .35), or ego resilience

334 (standardized simple slope = -.01, p = .85).

335 Again, as shown in Table 2, the moderation effects remained significant when analyses 336 controlled for the demographic covariates (i.e., parents' age, biological sex, educational 337 attainment, youth's age, biological sex, race/ethnicity, and parent or child psychotropic medications; for negative affect, $\beta = -.36$, p = .04, model $R^2 = .51$; for anxiety, $\beta = -.49$, p = .01, 338 model $R^2 = .49$; for ego resilience, $\beta = .41$, p = .03, model $R^2 = .50$). In addition, family cohesion 339 340 did not moderate the relations between parent-child similarity in how motor network interacts 341 with other brain regions during movie viewing or how emotion network interacts with other 342 brain regions during resting state and youth's emotional adjustment, regardless of controlling for

343 the demographic covariates or not, ps > .15.

344

Discussion

Children and their parents are naturally inclined to connect and be attuned to each other (Ainsworth et al., 2015; Bell, 2020). The similarity developed within the parent-child dyads at behavioral, psychological, and neurobiological levels has important implications for children to thrive in the complex and rapidly changing world (Hove & Risen, 2009; Wheatley et al., 2012). Despite an increasing body of research on parent-child similarity at the neural level (e.g., Lee et

350	al., 2017c; Ratliff et al., 2022; Turk et al., 2022), little is known about how it may contribute to
351	children's emotional adjustment. Using a naturalistic movie-watching fMRI paradigm and the
352	functional connectivity pattern similarity analysis with the emotion network seed, this study
353	found that greater parent-child similarity in how emotion network interacts with other brain
354	regions during movie viewing was associated with children's better emotional adjustment,
355	including less negative affect, lower anxiety, and greater ego resilience to bounce back from
356	adversities. Our findings also provide the first empirical evidence that the beneficial role of
357	parent-child neural similarity may depend on family contexts. Specifically, family cohesion
358	moderated the links between parent-child neural similarity and children's emotional adjustment.
359	Compared to the functional connectivity during resting state or highly controlled
360	experimental tasks, the naturalistic movie-watching design allows us to effectively trigger rich
361	brain activities in a more ecologically valid setting and explore how emotion network
362	communicates with other brain regions when parent-child dyads respond to emotionally salient
363	situations (Hasson et al., 2004; Lahnakoski et al., 2014; Finn et al., 2017). Indeed, our results
364	found that the associations between parent-child neural similarity and children's emotional
365	adjustment were only significant for the emotion network seed-based connectivity, but not for
366	the motor network seed-based connectivity during the movie viewing, which highlights that how
367	similarly emotion network (e.g., bilateral amygdala and the right temporal pole; Yarkoni et al.,
368	2011) interacts with other brain regions in parent-child dyads may play a unique role in
369	promoting children's emotion development. The associations were also not significant for
370	parent-child resting-state connectivity similarity using the emotion network seed, suggesting that
371	how much parents and children show similarities when actively responding to emotionally

salient situations may have greater implications for children's emotional adjustment compared to
the similarities in their intrinsic neural systems and brain configurations.

374 Prior research suggests that neural functional connectivity in parent-child dyads may play 375 a role in children's socio-emotional experiences (Lee et al., 2017b). Greater parent-child neural 376 similarity when watching an emotion-engaging movie may indicate that parents and children 377 respond similarly in various emotional situations in daily life, helping them show empathy and 378 understanding to each other in such situations (Nummenmaa et al., 2012). Such emotional 379 concordance between parents and children may not only provide a foundation for shared 380 emotional experiences and the formation of affectionate bonds (Kobak et al., 1993; Feldman, 381 2007; Stern et al., 2015), but also facilitate parental emotion socialization of their children (Hajal 382 & Paley, 2020; Meng et al., 2020). In addition, parent-child neural similarity may also subserve 383 the dyadic co-regulation processes in stressful situations (Quiñones-Camacho et al., 2020, 2021), 384 and consequently foster the adaptive self-regulation of the children and help them build up 385 resilience against stress (Bazhenova et al., 2001; Ratliff et al., 2022). Therefore, parent-child 386 neural similarity may ultimately benefit children's emotional adjustment, as reflected in reducing 387 their risks of experiencing negative affect and anxiety, and promoting their ego resilience in 388 adverse contexts.

Notably, our findings further suggest that the benefits of parent-child neural similarity may vary across different family contexts. Parent-child neural similarity while watching the same movie without face-to-face communication may reflect their abilities to align their thoughts and emotional states with each other with minimal external behavioral cues (Azhari et al., 2019). Although these abilities may be shaped by both genetic factors and earlier life experiences (Reindl et al., 2018; Kim et al., 2022), whether such abilities can ultimately confer benefits to

395 children's emotional adjustment may also depend on their current family environment. Prior 396 research suggested that mutual emotional exchanges provide the ground for parents and their 397 children to share experiences, build attunement, and facilitate socialization (Curci & Rimé, 2012; 398 Ponnet et al., 2013). Therefore, parent-child dyads from families with higher cohesion, which is 399 characterized by supportive and emotional interactions and bonding, may be more likely to 400 develop emotional coordination and adjustment given heightened neural similarities (Anderson 401 & Keltner, 2004). In contrast, children from families with lower cohesion may lack the contexts 402 or opportunities to benefit from such similarities. Our results are in line with prior physiological 403 work suggesting that parent-child physiological similarity may not always be adaptive or 404 promotive, and sometimes may even be maladaptive under certain circumstances (e.g., families 405 with greater cumulative risks; Smith et al., 2016; Suveg et al., 2016; Davis et al., 2018; Ratliff et 406 al., 2022). Taken together, our findings highlight the importance for future research to consider 407 "in what context" parent-child neural similarity may play either a beneficial or detrimental role 408 in children's development.

409 The current study has some limitations. First, the cross-sectional design with a focus on 410 adolescents does not allow us to examine the developmental trajectories or the directionality of 411 the study variables. Future studies using longitudinal approaches can improve our understanding 412 of how parent-child neural similarity may change over time as well as its long-term influences on 413 children's development. Second, our sample size is relatively small, which may limit the 414 generalizability of our findings and the possibility of conducting additional analyses with 415 subgroups. For example, although our findings were robust after adjusting for participants' 416 demographic characteristics such as sex, race/ethnicity, and age, we were not able to fully 417 explore the subgroup differences due to the small sample size. Scholars have highlighted that

418	parent-child neural similarity patterns and their implications for children's adjustment may vary
419	across parent-child dyads with different sex combinations (e.g., mother-daughter, father-son) or
420	different cultural contexts (Chen & Qu, 2021; Ratliff et al., 2021). Similarly, how parent-child
421	relationships and youth's emotion-related brain regions interactively influence youth's emotional
422	development may vary among youth at different stages of adolescence (Laursen & Collins, 2009;
423	Ahmed et al., 2015). Future research should consider the possible differences among specific
424	populations. In addition, future research that can compare biological parent-child dyads and
425	adoptive parent-child dyads may shed light on the investigations in the genetic versus
426	environmental effects for neural similarity. Third, we did not examine parents' emotional well-
427	being, which may be associated with both parent-child neural similarity and youth's emotional
428	adjustment. For example, parent-child neural similarity may serve as a mechanism how parents'
429	emotional distress and anxiety are transmitted to their children. Future studies may investigate
430	the role that parents' emotional well-being plays in parent-child neural similarity and youth's
431	emotional development. In addition, other possible individual or contextual factors (e.g., family
432	socioeconomic status, parenting style, presence of psychopathology) that may modulate the
433	relations between parent-child neural similarity and children's adjustment are also worth further
434	investigation. Fourth, prior work exploring the potential differences in neural similarity between
435	different types of dyads found that only parent-child dyads, but not stranger-child dyads, showed
436	brain-to-brain synchrony during cooperative interactions (Reindl et al., 2018). Future research
437	may examine whether the findings in the current study are specific to parent-child dyads or can
438	be generalized to other types of dyads. Lastly, future studies may employ other experimental
439	paradigms, tasks, neuroimaging methods, and statistical modeling approach to examine the
440	generalizability of our findings. For example, hyperscanning of parents and children using fNIRS

or EEG during active social interactions can examine whether the current findings can be applied
to the real-time parent-child neural synchrony during interactions, which may demand fine-tuned
communicative rhythms in more systems (e.g., sensory and motor system) between the dyads
(Fishburn et al., 2018; Bizzego et al., 2022). Also, future studies may consider examining
directional relationship (e.g., dynamic causal modeling, DCM), rather than functional
connectivity, to explore the possible causal effects between the brain regions (Stephan & Friston,

447 2010).

448 In conclusion, this study provides new evidence that parent-child neural similarity may 449 confer benefits to children's emotional adjustment, and highlights the unique role of naturally 450 activated emotion-related network in this process by using a seed-based functional connectivity 451 analysis. Most importantly, we identified the moderating role of family cohesion and found that 452 children living in more positive family environments may be more likely to derive benefits from 453 their neural similarity with their parents. To our knowledge, this is the first empirical evidence 454 showing that the associations between parent-child neural similarity and children's development 455 may depend on family contexts. These findings have important contributions to the literature by 456 increasing our understanding of the neurobiological mechanisms regarding how children thrive 457 by establishing attunement with their primary caregivers, and highlighting the importance of 458 investigating these processes by taking contextual factors into consideration.

459

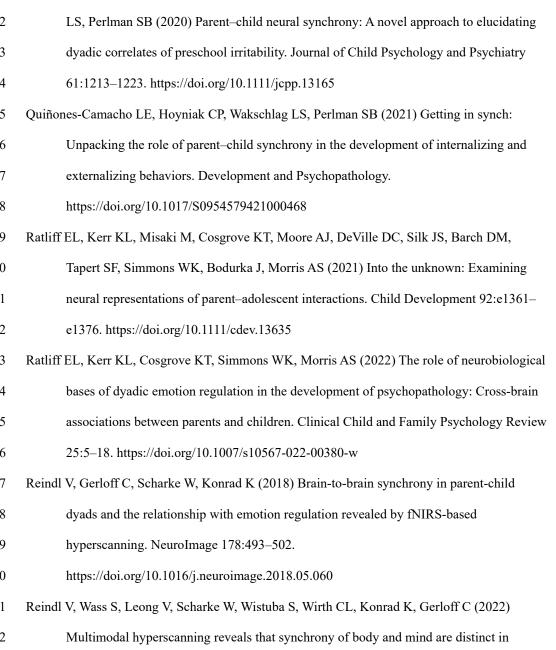
	461	References
	462	Ahmed SP, Bittencourt-Hewitt A, Sebastian CL (2015) Neurocognitive bases of emotion
Ot	463	regulation development in adolescence. Developmental Cognitive Neuroscience 15:11-
	464	25. https://doi.org/10.1016/j.dcn.2015.07.006
Ö	465	Ainsworth MDS, Blehar MC, Waters E, Wall S (2015) Patterns of attachment: A psychological
S	466	study of the strange situation. Psychology Press.
	467	Anderson C, Keltner D (2004) The emotional convergence hypothesis: Implications for
С С	468	individuals, relationships, and cultures. In: The social life of emotions (Tiedens LZ,
$\overline{\mathbf{S}}$	469	Leach CW, ed), pp144–163. Cambridge University Press.
	470	https://doi.org/10.1017/CBO9780511819568.009
O	471	Atzil S, Gendron M (2017) Bio-behavioral synchrony promotes the development of
ţ	472	conceptualized emotions. Current Opinion in Psychology 17:62-169.
Q	473	https://doi.org/10.1016/j.copsyc.2017.07.009
U	474	Atzil S, Hendler T, Feldman R (2014) The brain basis of social synchrony. Social Cognitive and
ö	475	Affective Neuroscience 9:1193-1202. https://doi.org/10.1093/scan/nst105
	476	Avants BB, Tustison N, Song G (2009) Advanced normalization tools (ANTS). Insight j, 2:1–35.
	477	Azhari A, Leck WQ, Gabrieli G, Bizzego A, Rigo P, Setoh P, Bornstein MH, Esposito G (2019)
C C	478	Parenting stress undermines mother-child brain-to-brain synchrony: a hyperscanning
Õ	479	study. Scientific Reports 9:1-9. https://doi.org/10.1038/s41598-019-47810-4
ſ	480	Bazhenova OV, Plonskaia O, Porges SW (2001) Vagal reactivity and affective adjustment in
	481	infants during interaction challenges. Child Development 72:1314–1326.
7	482	https://doi.org/10.1111/1467-8624.00350
JNeurosci Accepted Manuscript	483	Bell MA (2020) Mother-child behavioral and physiological synchrony. Advances in child

484	Development and Behavior 58:163-188. https://doi.org/10.1016/bs.acdb.2020.01.006
485	Birk SL, Stewart L, Olino TM (2022) Parent-child synchrony after early childhood: A systematic
486	review. Clinical Child and Family Psychology Review 25:529-551.
487	https://doi.org/10.1007/s10567-022-00383-7
488	Bizzego A, Azhari A, Esposito G (2022) Assessing computational methods to quantify mother-
489	child brain synchrony in naturalistic settings based on fNIRS signals. Neuroinformatics
490	20:427-436. https://doi.org/10.1007/s12021-021-09558-z
491	Block J, Kremen A M (1996) IQ and ego-resiliency: Conceptual and empirical connections and
492	separateness. Journal of Personality and Social Psychology 70:349-361.
493	https://doi.org/10.1037/0022-3514.70.2.349
494	Buzsáki G (2006) Rhythms of the Brain. Oxford University Press.
495	Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926-
496	1929. https://doi.org/10.1126/science.1099745
497	Chen PHA, Qu Y (2021) Taking a computational cultural neuroscience approach to study parent-
498	child similarities in diverse cultural contexts. Frontiers in Human Neuroscience
499	15:703999. https://doi.org/10.3389/fnhum.2021.703999
500	Crawford JR, Henry JD (2004) The Positive and Negative Affect Schedule (PANAS): Construct
501	validity, measurement properties and normative data in a large non-clinical sample.
502	British Journal of Clinical Psychology 43:245–265.
503	https://doi.org/10.1348/0144665031752934
504	Creavy KL, Gatzke-Kopp LM, Zhang X, Fishbein D, Kiser LJ (2020) When you go low, I go
505	high: Negative coordination of physiological synchrony among parents and children.
506	Developmental Psychobiology 62:310-323. https://doi.org/10.1002/ dev.21905

507	Curci A, Rimé B (2012) The temporal evolution of social sharing of emotions and its
508	consequences on emotional recovery: A longitudinal study. Emotion 12:1404-1414.
509	https://doi.org/10.1037/a0028651
510	Davis M, Bilms J, Suveg C (2017) In sync and in control: A meta-analysis of parent-child
511	positive behavioral synchrony and youth self-regulation. Family Process 56:962–980.
512	https://doi.org/10.1111/famp.12259
513	Davis M, West K, Bilms J, Morelen D, Suveg C (2018) A systematic review of parent-child
514	synchrony: It is more than skin deep. Developmental Psychobiology 60:674–691.
515	https://doi.org/10.1002/dev.21743
516	DePasquale CE (2020) A systematic review of caregiver-child physiological synchrony across
517	systems: Associations with behavior and child functioning. Development and
518	Psychopathology 32:1754-1777. https://doi.org/ 10.1017/S0954579420001236
519	Dimsdale-Zucker HR, Ranganath C (2018) Representational similarity analyses: A practical
520	guide for functional MRI applications. In: Handbook of behavioral neuroscience, pp509-
521	525. Elsevier.
522	Feldman R (2007) Parent-infant synchrony and the construction of shared timing; physiological
523	precursors developmental outcomes and risk conditions. Journal of Child Psychology and
524	Psychiatry 48:329-354. https://doi.org/10.1111/j.1469-7610.2006.01701.x
525	Feldman R (2012) Parent-infant synchrony: A biobehavioral model of mutual influences in the
526	formation of affiliative bonds. Monographs of the Society for Research in Child
527	Development 77:42–51.
528	Feng X, Shaw DS, Skuban EM, Lane T (2007) Emotional exchange in mother-child dyads:

Stability mutual influence and associations with maternal depression and child problem

	530	behavior. Journal of Family Psychology 21:714-725. https://doi.org/10.1037/0893-
	531	3200.21.4.714
Ot	532	Finn ES, Scheinost D, Finn DM, Shen X, Papademetris X, Constable RT (2017) Can brain state
	533	be manipulated to emphasize individual differences in functional connectivity?.
Ö	534	Neuroimage 160:140-151. https://doi.org/10.1016/j.neuroimage.2017.03.064
sci Accepted Manuscript	535	Fishburn FA, Murty VP, Hlutkowsky CO, MacGillivray CE, Bemis LM, Murphy ME, Huppert
	536	TJ, Perlman SB (2018) Putting our heads together: Interpersonal neural synchronization
с Т	537	as a biological mechanism for shared intentionality. Social Cognitive and Affective
$\overline{\mathbf{S}}$	538	Neuroscience 13:841-849. https://doi.org/10.1093/scan/nsy060
	539	Hajal NJ, Paley B (2020) Parental emotion and emotion regulation: A critical target of study for
O	540	research and intervention to promote child emotion socialization. Developmental
te	541	Psychology 56:403-417. https://doi.org/10.1037/dev0000864
Q	542	Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject synchronization of cortical
Û	543	activity during natural vision. Science 303:1634–1640.
ö	544	https://doi.org/10.1126/science.1089506
\triangleleft	545	Hayes AF (2012) PROCESS: A versatile computational tool for observed variable mediation
	546	moderation and conditional process modeling [White paper].
C C	547	http://www.afhayes.com/public/process2012.pdf
	548	Hove MJ, Risen JL (2009) It's all in the timing: Interpersonal synchrony increases affiliation.
Ľ.	549	Social Cognition 27:949-960. https://doi.org/10.1521/soco.2009.27.6.949
JNeuro	550	Hughes AA, Kendall PC (2009) Psychometric properties of the Positive and Negative Affect
7	551	Scale for Children (PANAS-C) in children with anxiety disorders. Child Psychiatry and
	552	Human Development 40:343-352. https://doi.org/10.1007/s10578-009-0130-4


24

553	Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) FSL. Neuroimage
554	62:782-790. https://doi.org/10.1016/j.neuroimage.2011.09.015
555	Kim P, Chen H, Dufford AJ, Tribble R, Gilmore J, Gao W (2022) Intergenerational neuroimaging
556	study: mother-infant functional connectivity similarity and the role of infant and
557	maternal factors. Cerebral Cortex 32:3175-3186. https://doi.org/10.1093/cercor/bhab408
558	Kim-Spoon J, Lee TH, Clinchard C, Lindenmuth M, Brieant A, Steinberg L, Deater-Deckard K,
559	Casas B (2023) Brain similarity as a protective factor in the longitudinal pathway linking
560	household chaos, parenting, and substance use. Biological Psychiatry: Cognitive
561	Neuroscience and Neuroimaging. Advance online publication.
562	https://doi.org/10.1016/j.bpsc.2023.04.008
563	Kobak RR, Cole HE, Ferenz-Gillies R, Fleming WS, Gamble W (1993) Attachment and emotion
564	regulation during mother-teen problem solving: A control theory analysis. Child
565	Development 64:231-245. https://doi.org/10.1111/j.1467-8624.1993.tb02906.x
566	Lahnakoski JM, Glerean E, Jääskeläinen IP, Hyönä J, Hari R, Sams M, Nummenmaa L (2014)
567	Synchronous brain activity across individuals underlies shared psychological
568	perspectives. NeuroImage 100:316-324.
569	https://doi.org/10.1016/j.neuroimage.2014.06.022
570	Laursen B, Collins WA (2009) Parent-child relationships during adolescence. In: Handbook of
571	adolescent psychology: contextual influences on adolescent development (Lerner RM,
572	Steinberg L, ed), pp3-42. John Wiley & Sons, Inc.
573	https://doi.org/10.1002/9780470479193.adlpsy002002
574	Lee TH, Miernicki ME, Telzer EH (2017a) Behavioral and neural concordance in parent-child

575 dyadic sleep patterns. Developmental Cognitive Neuroscience 26:77–83.

576	https://doi.org/10.1016/j.dcn.2017.06.003
577	Lee TH, Miernicki ME, Telzer EH (2017b) Families that fire together smile together: Resting
578	state connectome similarity and daily emotional synchrony in parent-child dyads.
579	NeuroImage 152:31-37. https://doi.org/10.1016/j.neuroimage.2017.02.078
580	Lee TH, Qu Y, Telzer EH (2017c) Love flows downstream: mothers' and children's neural
581	representation similarity in perceiving distress of self and family. Social cognitive and
582	Affective Neuroscience 12:1916–1927. https://doi.org/10.1093/scan/nsx125
583	Lee TH, Qu Y, Telzer EH (2018) Dyadic neural similarity during stress in mother-child dyads.
584	Journal of Research on Adolescence 28:121-133. https://doi.org/10.1111/jora.12334
585	Lee TH, Qu Y, Telzer EH (2019) Neural representation of parental monitoring and links to
586	adolescent risk taking. Frontiers in Neuroscience 13:1286.
587	https://doi.org/10.3389/fnins.2019.01286
588	Lindsey EW, Cremeens PR, Colwell MJ, Caldera YM (2009) The structure of parent-child
589	dyadic synchrony in toddlerhood and children's communication competence and self-
590	control. Social Development 18:375-396. https://doi.org/10.1111/j.1467-
591	9507.2008.00489.x
592	Lunkenheimer E, Hamby CM, Lobo FM, Cole PM, Olson SL (2020) The role of dynamic dyadic
593	parent-child processes in parental socialization of emotion. Developmental Psychology
594	56:566–577. https://doi.org/10.1037/dev0000808
595	Meng K, Yuan Y, Wang Y, Liang J, Wang L, Shen J, Wang Y (2020) Effects of parental empathy
596	and emotion regulation on social competence and emotional/behavioral problems of
597	school-age children. Pediatric Investigation 4:91-98. https://doi.org/10.1002/ped4.12197
598	Nguyen T, Schleihauf H, Kayhan E, Matthes D, Vrtička P, Hoehl S (2020) The effects of

		Parent-Child Neural Similarity 27
	599	interaction quality on neural synchrony during mother-child problem solving. Cortex
	600	124:235-249. https://doi.org/10.1016/j.cortex.2019.11.020
Ot	601	Nguyen T, Schleihauf H, Kayhan E, Matthes D, Vrtička P, Hoehl S (2021) Neural synchrony in
	602	mother-child conversation: Exploring the role of conversation patterns. Social Cognitive
Ö	603	and Affective Neuroscience 16:93-102. https://doi.org/10.1093/scan/nsaa079
S	604	Nummenmaa L, Glerean E, Viinikainen M, Jääskeläinen IP, Hari R, Sams M (2012) Emotions
	605	promote social interaction by synchronizing brain activity across individuals. Proceedings
ສັ	606	of the National Academy of Sciences 109:9599–9604.
sci Accepted Manuscript	607	https://doi.org/10.1073/pnas.1206095109
	608	Olson DH, Sprenkle DH, Russell CS (1979) Circumplex model of marital and family systems: I.
O O	609	Cohesion and adaptability dimensions family types and clinical applications. Family
te	610	Process 18:3–28. https://doi.org/10.1111/j.1545-5300.1979.00003.x
O O	611	Ponnet K, Wouters E, Mortelmans D, Pasteels I, De Backer C, Van Leeuwen K, Van Hiel A
U U U	612	(2013) The influence of mothers' and fathers' parenting stress and depressive symptoms
Ö	613	on own and partner's parent-child communication. Family Process 52:312-324.
\triangleleft	614	https://doi.org/10.1111/famp.12001
	615	Pruim RH, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF (2015) ICA-AROMA:
S	616	A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage
Õ	617	112:267-277. https://doi.org/10.1016/j.neuroimage.2015.02.064
L T	618	Qu Y, Zhou Z, Lee TH (2023) Parent-child neural similarity: Measurements, antecedents, and
Ð	619	consequences. Frontiers in Cognition 2:1113082.
JNeur	620	https://doi.org/10.3389/fcogn.2023.1113082
	621	Quiñones-Camacho LE, Fishburn FA, Camacho MC, Hlutkowsky CO, Huppert TJ, Wakschlag

- 643 mother-child dyads. NeuroImage 251:118982.
- 644 https://doi.org/10.1016/j.neuroimage.2022.118982

645	Reynolds CR, Richmond BO (1978) What I think and feel: A revised measure of children's
646	manifest anxiety. Journal of Abnormal Child Psychology 6:271-280.
647	https://doi.org/10.1007/BF00919131
648	Scheel N, Keller JN, Binder EF, Vidoni ED, Burns JM, Thomas BP, Stowe AM, Hynan LS,
649	Kerwin DR, Vongpatanasin W, Rossetti H, Cullum CM, Zhang, R, Zhu, DC (2022)
650	Evaluation of noise regression techniques in resting-state fMRI studies using data of 434
651	older adults. Frontiers in Neuroscience 16:1006056.
652	https://doi.org/10.3389/fnins.2022.1006056
653	Smith BW, Dalen J, Wiggins K, Tooley E, Christopher P, Bernard J (2008) The brief resilience
654	scale: assessing the ability to bounce back. International Journal of Behavioral Medicine
655	15:194-200. https://doi.org/10.1080/10705500802222972
656	Smith JD, Woodhouse SS, Clark CA, Skowron EA (2016) Attachment status and mother-
657	preschooler parasympathetic response to the strange situation procedure. Biological
658	Psychology 114:39-48. https://doi.org/10.1016/j.biopsycho.2015.12.008
659	Stephan KE, Friston KJ (2010) Analyzing effective connectivity with functional magnetic
660	resonance imaging. Wiley Interdisciplinary Reviews: Cognitive Science 1:446-459.
661	https://doi.org/10.1002/wcs.58
662	Stern JA, Borelli JL, Smiley PA (2015) Assessing parental empathy: A role for empathy in child
663	attachment. Attachment & Human Development 17:1–22.
664	https://doi.org/10.1080/14616734.2014.969749
665	Suveg C, Shaffer A, Davis M (2016) Family stress moderates relations between physiological
666	and behavioral synchrony and child self-regulation in mother-preschooler dyads.

Developmental Psychobiology 58:83-97. https://doi.org/10.1002/dev.21358 667

668	Turk E, Vroomen J, Fonken Y, Levy J, van den Heuvel MI (2022) In sync with your child: The
669	potential of parent-child electroencephalography in developmental research.
670	Developmental Psychobiology 64:e22221. https://doi.org/10.1002/dev.22221
671	Wang H, Mai X, Han ZR, Hu Y, Lei X (2018) Linkage between parent-child frontal resting
672	electroencephalogram (EEG) asymmetry: the moderating role of emotional parenting.
673	Journal of Child and Family Studies 27:2990–2998. https://doi.org/10.1007/s10826-018-
674	1121-5
675	Wheatley T, Kang O, Parkinson C, Looser CE (2012) From mind perception to mental
676	connection: Synchrony as a mechanism for social understanding. Social and Personality
677	Psychology Compass 6:589-606. https://doi.org/10.1111/j.1751-9004.2012.00450.x
678	Woo CW, Koban L, Kross E, Lindquist MA, Banich MT, Ruzic L, Andrews-Hanna JR, Wager
679	TD (2014) Separate neural representations for physical pain and social rejection. Nature
680	Communications 5:5380. https://doi.org/10.1038/ncomms6380
681	Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated
682	synthesis of human functional neuroimaging data. Nature Methods 8:665-670.
683	https://doi.org/10.1038/nmeth.1635
60 A	

685 Table 1

686 Sample Descriptive Information

	Parent-child dyads ($N = 32$)								
Variables	М	SD	Range						
Parents' age	43.53	7.30	30-64						
Parent's biological sex	0.72	0.46	0, 1						
Parents' education	0.75	0.44	0, 1						
Youth's age	11.69	2.80	8-17						
Youth's biological sex	0.41	0.50	0, 1						
Youth's race/ethnicity	0.31	0.47	0, 1						
Psychotropic medications	0.03	0.18	0, 1						
Youth's negative affect	2.21	0.74	1-3.71						
Youth's anxiety	1.37	0.66	0.24-3.04						
Youth's ego resilience	3.21	0.75	1.83-5						
Family cohesion	3.58	0.68	1.70-5						

687 Note. Parents' and youth's biological sex was coded as 0 (male) and 1 (female). Parents'

688 education was coded as 0 (less than bachelor's degree) and 1 (bachelor's degree or above).

689 Youth's race/ethnicity was coded as 0 (non-Hispanic White) and 1 (racial/ethnic minority).

690 Psychotropic medications were coded as (0 = neither the parent or the child was taking

691 psychotropic medications, 1 = the parent or the child was taking psychotropic medications).

695

696

697

698

Parent-Child Neural Similarity

693 Table 2

694 Main and Interaction Effects of Parent-Child Neural Connectivity Pattern Similarity and Family Cohesion on Youth's Emotional Adjustment

	Negative affect						Anxiety					Ego resilience						
	М	ain e	effect	Inter	actio	n effect	М	lain e	ffect	Inter	actio	n effect	М	ain e	ffect	Inter	action	n effect
		mod	lel		mod	el		model		model			model			model		
	В	SE	β	В	SE	β	В	SE	β	В	SE	β	В	SE	β	В	SE	β
Intercept	2.83	.92		3.25	.93		2.45	.86		2.62	.84		2.58	.95		2.24	.94	
Parent-child neural similarity	-2.00	.95	37*	-1.38	.90	25	-1.60	.88	33†	-1.06	.81	22	2.26	.98	.41*	1.63	.91	$.30^{\dagger}$
Family cohesion				29	.26	27				08	.23	09				.25	.26	.23
Parent-child neural similarity				-3.59	1.71	36*				-4.31	1.54	49*				4.05	1.74	.41*
× family cohesion																		
Covariates																		
Parent's age	02	.02	15	02	.02	18	03	.02	29	03	.02	31	.01	.02	.09	.01	.02	.12
Parent's biological sex	.33	.31	.20	.25	.29	.16	.01	.29	.01	10	.26	07	.10	.32	.06	.19	.29	.12
Parent's education	14	.31	08	20	.29	12	19	.29	13	31	.26	21	29	.32	17	21	.30	12
Youth's age	01	.05	04	04	.06	14	.01	.05	.05	.01	.05	.05	.02	.06	.09	.04	.06	.16
Youth's biological sex	.54	.28	$.36^{\dagger}$.40	.26	.27	.29	.26	.22	.14	.24	.11	04	.29	02	.12	.27	.08
Youth's race/ethnicity	03	.28	02	09	.27	06	.32	.26	.22	.34	.25	.24	51	.29	32^{\dagger}	26	.28	29†
Psychotropic medications	1.62	.89	$.39^{\dagger}$.62	.84	.15	.57	.74	.15	23	.76	06	40	.82	10	.61	.86	.14
R^2	.35			.51			.28			.49			.33			.50		

Note. Parents' and youth's biological sex was coded as 0 (*male*) and 1 (*female*). Parents' education was coded as 0 (*less than bachelor's degree*) and 1 (*bachelor's degree or above*). Youth's race/ethnicity was coded as 0 (*non-Hispanic White*) and 1 (*racial/ethnic minority*). Psychotropic medications were coded as $(0 = neither the parent or the child was taking psychotropic medications, 1 = the parent or the child was taking psychotropic medications, 1 = the parent or the child was taking psychotropic medications, <math>^{\dagger}p < .05$, $^{**}p < .01$.

699 700 --- Figure Captions ---

Figure 1. Schematic of analytical approach to vectorize functional connectivity maps and
 calculate the connectivity pattern similarity of the parent-child dyads based on the cosine
 distance.

704

Figure 2. The association between parent-child movie-evoked neural similarity of emotion
network seed-based connectivity and youth's negative affect (A) and anxiety (B) was moderated
by family cohesion.

708 Note. High (or low) parent-child neural similarity/family cohesion is 1 SD above (or below) the

709 mean of parent-child neural similarity/family cohesion. The error bars indicate the 95%

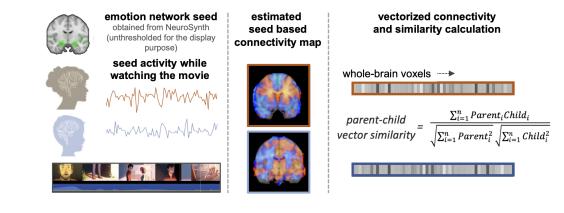
confidence interval of the estimation. Standardized simple slopes are shown in parentheses. ** p

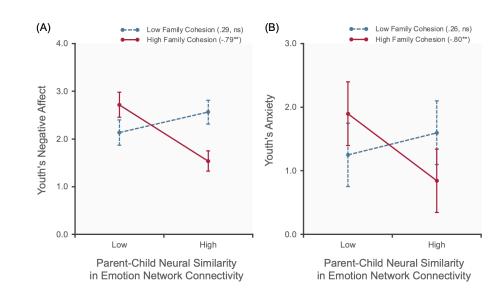
711 < .01, ns = not significant.

712

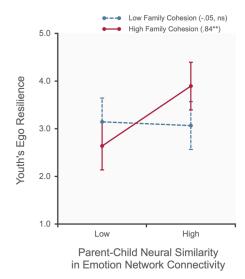
713 Figure 3. The association between parent-child movie-evoked neural similarity of emotion

714 network seed-based connectivity and youth's ego resilience was moderated by family cohesion.


715 Note. High (or low) parent-child neural similarity/family cohesion is 1 SD above (or below) the


716 mean of parent-child neural similarity/family cohesion. The error bars indicate the 95%

717 confidence interval of the estimation. Standardized simple slopes are shown in parentheses. p


718 < .01, ns = not significant.

719

JNeurosci Accepted Manuscript

