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ABSTRACT

BACKGROUND: Atypical activity in the salience network (SN) and default mode network (DMN) has been previously
reported in individuals with autism spectrum disorder (ASD). However, no study to date has investigated the nature
and dynamics of the interaction between these two networks in ASD.

METHODS: Here, we aimed to characterize the functional connectivity between the SN and the DMN by using
resting-state functional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange and
comparing individuals with ASD (n = 325) to a typically developing group (n = 356). We examined static and
dynamic levels of functional connectivity using the medial prefrontal cortex (MPFC) seed as a core region of the DMN.
RESULTS: We found that individuals with ASD have higher mPFC connectivity with the insula, a core region of the
SN, when compared with the typical development group. Moreover, the mPFC-insula coupling showed less variability
in ASD compared with the typical development group. A novel semblance-based network dynamic analysis further
confirmed that the strong mPFC-insula coupling in the ASD group reduced spontaneous attentional shift for
possible external elements of the environment. Indeed, we found that excessive mPFC-insula coupling was
significantly associated with a tendency for reduced social responsiveness.

CONCLUSIONS: These findings suggest that the internally oriented cognition in individuals with ASD may be due to

excessive coupling between the DMN and the SN.
https://doi.org/10.1016/j.bpsc.2021.11.016

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by impairments in social and commu-
nication abilities along with restricted and repetitive patterns of
behaviors and interests (1). Despite significant improvements
in the diagnosis, treatment, and support programs of ASD, the
neurobiological underpinnings of the core and associated
symptom domains remain poorly characterized. Recent theo-
retical and empirical findings have highlighted that atypical
activities in the default mode network (DMN) (2,3) and salience
network (SN) may be contributing to the expression and
severity of different aspects of ASD, including reduced social
attention and motivation, as well as cognitive and behavioral
inflexibility (4-6).

The DMN has been considered as the main neural network
for self-referential processing (7-10). Considerable evidence
shows that the DMN is typically more activated when in-
dividuals have an internal (e.g., stimulus-independent thoughts
or internally oriented cognition) (11) rather than an external (i.e.,
an attention-demanding task) (12) focus of cognition. Thus,
increased DMN activity appears to reflect stimulus-
independent thought processes (13) when an individual dis-
engages their attention from external information. Studies
suggest that those with ASD show heightened neural activity in
the DMN, which then results in a failure to give attention to

external salient inputs, such as social or environmental cues
that need to be attended to and processed (14-16).

The SN, anchored in the anterior insula and the dorsal
anterior cingulate cortex, is believed to play a role in identifying
environmental salient stimuli and in reconfiguring brain con-
nectivity to process it (6). Resting-state and task-related
functional magnetic resonance imaging (fMRI) studies (4,5,17)
show that individuals with ASD often have atypical function-
ality in the SN, especially in the insula. Di Martino et al. (4)
observed that the regional homogeneity and degree centrality
of the insula region was significantly decreased in ASD, which
suggests a reduced sensitivity in the SN to external stimuli (5).
Importantly, a recent study used SN connectivity patterns to
classify children with ASD from typically developing children
and to predict the severity of the restricted and repetitive be-
haviors in ASD (17). These findings indicate that SN dysfunc-
tion may be an additional underlying mechanism causing
individuals with ASD to be less responsive to external sensory
information.

Although the critical role of the DMN and SN in ASD has
been investigated extensively, the nature of the interrelation-
ship between these networks is still unclear. It is unknown how
the interaction between the regions in the SN and DMN con-
tributes to the exaggerated internally oriented cognition and
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the reduced responsiveness to external stimuli seen in ASD.
Studies examining typical development (TD) samples show
that the SN has a central role in shifting network configura-
tions, either moving from a state of deep, internally oriented
cognition to one where attention is focused externally or vice
versa (18-21). When there are no external inputs, the SN in-
hibits executive processing by functional decoupling for ex-
ecutive networks such as the frontal-parietal network (FPN),
while also increasing its functional coupling with the DMN to
maintain an internally focused state. However, when there are
sensory inputs to actively process, the functional coupling
between the SN and executive networks increases while the
DMN is functionally decoupled from the SN. In other words, if
the SN fails to disassociate from the DMN, individuals will not
switch appropriately from an internally oriented cognition to a
state with an external focus. The SN changes the network
configuration spontaneously to monitor possible environ-
mental changes (22,23). For example, Kucyi et al. (23) showed
that the SN coupled and decoupled between the attention
network and the DMN regardless of the experimental condi-
tions, suggesting that moment-to-moment attentional fluctu-
ations can also occur without external sensory inputs.

In this study, we examined the configuration dynamics be-
tween the SN and DMN in those with ASD. In particular, we
hypothesized that ASD would be associated with greater
functional coupling between the DMN and SN due to hyper-
activity in the DMN. To test this hypothesis, we conducted a
seed-based, static functional connectivity analysis at the
whole-brain level with a medial prefrontal cortex (mPFC) seed.
Although the DMN consists of not only mPFC but also the
lateral and posterior medial parietal cortices, lateral temporal
cortex, and anterior and posterior cingulate cortices (24-27),
the mPFC is identified as a core region of self-relevance and
social functions of the DMN (8-10,28-30). In addition, in
previous studies of autism, mPFC-related alterations are the
most consistent findings compared with those of any other
region of the DMN (7,31-34). We expected that the ASD
group would show more mPFC coupling with regions in the
SN, such as the insula. We further hypothesized that the
moment-by-moment neural coupling between the DMN and
SN should be less variable in the ASD group, whereas there
would be greater variability in connectivity changes in the TD
group (22,23). To test this additional hypothesis, we per-
formed a dynamic functional connectivity analysis to measure
the variability of the connectivity between the mPFC and re-
gions in the SN over time. Furthermore, we used a novel
semblance-based network dynamic analysis (SNDA) to esti-
mate the network switch in the neural configuration that oc-
curs between the SN and each of the DMN and the FPN.
Finally, we checked whether the observed connectivity
pattern was associated with a tendency for social respon-
siveness (35).

METHODS AND MATERIALS
Autism Resting-State fMRI Dataset and
Preprocessing

This study was carried out using resting-state fMRI data from
the Autism Brain Imaging Data Exchange (4). The dataset was
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initially downloaded through the Mind Research Network’s
collaborative informatics and neuroimaging suite (36)'. We
only included individuals with more than 100 volumes, full
coverage of both T1 and echo-planar images, and without
motions (framewise displacement > 0.5 mm), resulting in 681
samples: 325 in the ASD group (mean age = 16.02 years,
SD = 7.69, SEM = 0.430, range = 7—58 years; 12.54% fe-
male) and 356 in the TD group (mean age = 16.32 years, SD =
6.94, SEM = 0.361, range = 6—48 years; 18.01% female)
(Table S1). There were no group differences in age (tg79 =
0.283, p = .777, 95% CI°0%0 bootstrap — 4008 to 1.208,
Cohen’s d = 0.022, Bayes factor 10 [BF4o] = 0.089) (JASP,
0.14.1 version; https://jasp-stats.org/).

Preprocessing was performed using FSL (37), ICA-AROMA
(38), and ANTSs (39). Preprocessing included a 0.001 to 0.08 Hz
bandpass filter, first 10 volumes cut, motion correction, 5-mm
smoothing, slice-timing correction, intensity normalization,
regressing out cerebrospinal fluid/white matter with individually
segmented masks, independent component analysis denois-
ing (corrected mean framewise displacement = 0.038 mm,
range = 0.015-0.096 mm), and registration to standard Mon-
treal Neurological Institute 2-mm echo-planar image brain
template (40).

mPFC Seed-Based Static Functional Connectivity

Based on our hypothesis, we performed a seed-based con-
nectivity analysis using the mPFC as the core seed region in
the DMN. To this end, we extracted the mean time series of the
mPFC using a previously defined mask (voxel number k =
5257; the center of gravity: x = =3, y = 49, z = 16) (Figure 1A)
(41). A multiple regression analysis was performed to estimate
individual functional connectivity between the mPFC and all
other voxels. Then, individual-level mPFC seed connectivity
maps were inputted into a nonparametric group-level analysis
using the FSL randomise (5000 permutations) combined with
threshold-free cluster enhancement correction at p = .05 (42)
with two between-group designs: (ASD > TD) and (ASD < TD).
We additionally included a mean-centered age covariate in the
design matrix as a continuous nuisance regressor to attenuate
age effects.

mPFC-Insula Connectivity Variability

In addition to mPFC seed analysis that identified a static
mPFC connectivity with the insula on average, we evaluated
how stable the functional connectivity between the mPFC and
insula stayed in terms of moment-by-moment connectivity
changes (Figure 1B). To quantify the stability of functional
connectivity, we first examined dynamic functional connec-
tivity (22) with mPFC and insula activity by using the tapered
sliding window approach, 50-repetition time window using
the Dynamic Correlation Toolbox (43) (for the region of in-
terest mask, see the Supplement). We then calculated the
mean square successive difference (MSSD) value (44) of
connectivity strengths between sliding window segmented
connectivity matrices as measures of moment-by-moment

'For downloading the dataset, we used the following set of
keywords: [(Studies: ABIDE) AND (Subjects: PATIENT OR
CONTROL) AND (Collection Technique: rest fMRI OR resting-
state fMRI OR rest state fMRI OR Functional)].
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Figure 1. (A) Medial prefrontal cortex (MPFC)
seed mask used in the seed-based static functional
connectivity analysis. (B) Schematic figure of con-
\/ nectivity variability estimation. Using sliding win-
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© denotes ‘Hadamard product’; the
pairwise multiplication for the two
semblance matrices

connectivity change across time, namely connectivity vari-
ability. MSSD is calculated by subtracting time point ¢ from
time point t + 7 and squaring the result. The squared values
across the time are then averaged to produce an MSSD value
(see equation 1).

n—1

=3 (1= x)° / (n=1) (1)

i=1

where 6° pertains to mPFC-insula connectivity fluctuation
across time, i pertains to each sliding window, and n pertains
to the number of observations for each individual. A low MSSD
represents low moment-to-moment connectivity variability
(i-e., high stability) between regions.

Semblance-Based Network Dynamic Analysis

To further capture the dynamic changes in connectivity based
on the network switching model (6,20), we used a novel SNDA
(Figure 1C). The analysis is based on a wavelet-based
semblance analysis, which has been used in geoscience to
compare the phase information of two different signals (45). A

wavelet-based semblance analysis first transforms the two
signals (e.g., A and B) into a time-by-frequency matrix
(e.g., CWTA and CWTg) using a continuous wavelet trans-
formation. Then, the semblance between signal A and B is
calculated (see equations 2 and 3).

CWTag = CWTA X CWTg )

Sas = cos(tan™" (J(CWTag)/R(CWTag))) @)

where X is the cross-wavelet transformation, J is the imagi-
nary part of CWTa g, and R is the real part of CWTpag. Sap
produces a time-by-frequency matrix with values ranging
from —1 to 1, where —1 indicates a = (or 180°) phase differ-
ence and 1 indicates a 0 phase difference between two signals
A and B. Therefore, the method provides an interpretable
measure of the phase similarity between the two signals
across different frequency bands and can serve as a proxy for
the degree of coupling between the two signals. The SNDA
further extends the semblance analysis by taking the
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Hadamard product (elementwise product) of the two
semblance matrices to generate a semblance-based dy-
namics (SND) value (see equation 4).

SNDagac = Sas O Sac @)

It offers a way to examine the phase interactions between two

semblance results, where the values also range from —1 to 1.
For example, suppose that there are three signals (e.g., A, B,
and C) originating from three different sources. When calcu-
lating the SND from two semblances Sp g and Sp ¢ (which is
denoted as SNDpgac), @ negative SND value indicates that
one pair of signals (e.g., A and B) is coupling, while another
pair of signals (e.g., A and C) is decoupling. Alternatively, a
positive value indicates that both pairs of signals (e.g., A-B
and A-C) are coupling at the same time.

Compared with previous methods used in measuring
neural coupling (e.g., correlation coefficient), the SNDA has a
couple of novel aspects. First, because it is based on a
wavelet method, it measures the coupling dynamics contin-
uously across time points and also across a predefined fre-
quency range. Second, unlike measuring the degree of
coupling between a pair of neural time series, SNDA can
measure the coupling dynamics between pairs of neural se-
ries. For example, a correlation coefficient value will only
provide the degree of coupling between site A and site B
(i.e., if A and B are syncing, the value will be near 1, whereas
if A and B are desyncing, the value will be close to —1). On
the other hand, the SNDA is able to generate a single mea-
sure of whether sites A and B are coupling while sites C and
D are decoupling, or whether sites A and B are decoupling
while sites C and D are coupling. In other words, the SNDA is
able to capture a broader pattern of dynamic change (i.e.,
more than one pair at the same time) compared with previous
methods such as correlation coefficients. In this study, we
first calculated the semblance between the insula-mPFC
(Si,m) and between the insula-FPN (S, ) to measure the de-
gree of coupling for each pair. Then, we calculated the
semblance-based network dynamics (SNDy, ) using the
semblance matrices S,y and S;r. Before taking the Hada-
mard product, we discarded semblance values that were
above —0.7 and below 0.7 for each semblance. A cutoff value
of ®£0.7 roughly includes only signals that have a phase dif-
ference of less than w/4 (see Figure S1 for various criteria).
The analysis was implemented using the cwt function in
MATLAB 2020a (The MathWorks, Inc.) with a Morlet wavelet
and frequencies ranging from 0.01 to 0.08. We excluded the
area that could be contaminated by the edge effect in each
frequency using the cone of influence results from the cwt
function. Each cluster was estimated by using the contour
function.

Social Reciprocity Assessment

To confirm that the alteration of the mPFC-insula coupling was
associated with reduced social reciprocity in ASD, we con-
ducted regression analyses between the connectivity metrics
and social reciprocity scores, including the Social Respon-
siveness Scale (SRS) (35) and the Autism Diagnostic Obser-
vation Schedule (ADOS) (46). The SRS provides a quantitative
measurement that captures an individual’s characteristics of
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social behavior, with a higher SRS score indicating a worse
performance in reciprocal social behaviors. The ADOS pro-
vides the severity of ASD features used for diagnostic measure
(47). For the SRS, we combined all available individuals across
groups because the measurement is not limited for a specific
diagnostic purpose (n = 195; ASD = 101; TD = 94) (see
Table S5 for results of each group). The ADOS is only for in-
dividuals with ASD, and thus we only included 199 ASD
samples. Statistical significance was tested at o = 0.05
through bootstrapping (n = 5000) combined with the robust
method (48).

RESULTS

mPFC Seed-Based Static Functional Connectivity

Whole-brain connectivity analysis of the mPFC seed between
groups showed that compared with the TD group, the ASD
group exhibited a significant increase in functional connectivity
between the mPFC and the right anterior insula (Figure 2A).
Because the anterior insula is considered to be the core region
of the SN (6,20), this suggests that the mPFC, which is a core
region of the DMN, is connected to the SN more strongly in the
ASD group than in the TD group (Table S2 and Figure S3)°. The
right anterior insula remained significant even when the scan
site variance was controlled (see the Supplement). We also
performed network region of interest analysis to confirm that
the increased mPFC-insula reflected excessive connectivity
between the DMN and SN and found consistent results (see
the Supplement for a robustness check of SN-DMN coupling).

mPFC-Insula Connectivity Variability Over Time

Because the static functional connectivity analysis showed a
stronger mPFC-insula connectivity in the ASD group than in
the TD group, we next estimated functional coupling stability
between the mPFC and insula. We found that the ASD group
showed less variability (mean = 0.018, SD = 0.009, SEM =
0.0003) in their mPFC-insula connectivity than the TD group
(mean = 0.034, SD = 0.005, SEM = 0.001) (ts70 = 28.364, p <
.001, 95% CI = 0.015 to 0.017, Cohen’s d = 2.176, BFo >
10,000) (Figure 2B). The results indicated that mPFC-insula
coupling was more stable over time in the ASD group than in
the TD group.

Semblance-Based Network Dynamic Analysis

Based on the network switching model, as the SN increases
functional connectivity with the FPN, attentional orientation
switches from internal to external, and contemporaneously,
connectivity between the SN and the DMN decreases. We
inferred that the stable mPFC-insula connectivity in the ASD
group reflects a reduction in externally directed monitoring
behavior (i.e., a reduction in monitoring one’s surrounding for
changes). In the TD group, though, the higher variability in the
mPFC-insula connectivity can be interpreted as the SN (i.e.,
insula) increasing the functional connectivity with the FPN
while inhibiting the DMN (i.e., mPFC) to direct attention to the
external surroundings spontaneously and momentarily. From
the calculated SND, we identified time X frequency clusters 1)

2For all uncorrected maps, see NeuroVault: https://neurovault.org/
collections/10441/
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where the insula was coupling with the FPN but decoupling
with the mPFC (a switch to FPN [FPN-switch]) and 2) where the
insula was coupling with the mPFC but decoupling with the
FPN (a switch to mPFC [mPFC-switch]). For each participant,
we counted the number of FPN-switches and mPFC-switches
to measure the relative proportion of FPN-switches (i.e., FPN-
switch/[FPN-switch + mPFC-switch]). We also calculated the
mean duration of these time X frequency clusters and calcu-
lated the duration difference between the FPN-switch and
mPFC-switch for each participant (length of FPN-switch minus
length of mPFC-switch).

As shown in Figure 2C, the ASD group showed a lower
proportion of FPN-switches (mean = 0.623, SD = 0.140,
SEM = 0.008) than the TD group (mean = 0.646, SD = 0.141,
SEM = 0.008) (tg79 = 2.12, p = .034, 95% CI = 0.001 to 0.435,
Cohen’s d = 0.163, BF = 0.77), and the length difference

ASD TD

100

*%

(2]
o
Q
o
I
<]
o
()
[}
(%}
@
c
5]
=
7]
2
5]
a
@
9]
o
s}
o]
o}
(]

0.01 0.02 0.03 0.04 -10 0 10

MPFC-INS connectivity variability
(MSSD)

Region coupling length:
INS-FPN minus INS-MPFC

” \

20

Figure 2. (A) Nonparametric group-level medial
prefrontal cortex (MPFC) seed connectivity analysis
results (5000 permutations with threshold-free
cluster enhancement [TFCE] correction), showing
stronger coupling with the insula (INS) in autism
spectrum disorder (ASD) compared with typical
development (TD). (B) MPFC-INS connectivity vari-
ability (mean square successive difference [MSSD])
on average, showing more stable mPFC-INS
coupling over time (i.e., low MSSD) in ASD
compared with TD. (C, D) Semblance-based
network dynamic analysis results for the proportion
(C) and duration (D) of frontal-parietal network (FPN)
switch. Error bars denote the standard error term.
**p < .001, *p < .01, *p < .05 at 95% confidence
interval after bootstrapping resampling (n = 5000).
MNI, Montreal Neurological Institute.

TFCE corrected
p-value

*%

™

between the FPN-switch and mPFC-switch was shorter for
the ASD group (mean = 8.45 seconds, SD = 10.79, SEM =
0.598) than the TD group (mean = 11.181 seconds, SD =
12.66, SEM = 0.671) (ts79 = 3.01, p = .003, 95% CI = 0.953 to
4.459, Cohen’s d = 0.231, BFyo = 7.06) (Figure 2D) (see the
Supplement for a robustness check on using different criteria
for the analysis). Therefore, results from both the proportion
and length measures implied that the ASD group had a
relatively infrequent and shorter coupling between the FPN
and insula than the TD group.

mPFC-Insula Connectivity Correlates of Social
Behavior

The regressions analyses revealed that MSSD of mPFC-
insula connectivity negatively predicted the SRS score

Figure 3. Results of linear regression analysis for
the relationship of Social Responsiveness Scale
(SRS) score with (A) medial prefrontal cortex
(MPFC)-insula (INS) connectivity variability and (B)
INS coupling switching length difference. The
shaded area indicates the 95% confidence intervals.
Asterisk denotes statistical significance at p < .05
level after n = 5000 bootstrapping resampling. ASD,
autism spectrum disorder; FPN, frontal-parietal
network; MSSD, mean square successive differ-
ence; TD, typical development.

30 40

Region coupling length difference:
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(B=—3247.684, SE = 192.632, p < .001, 95% Cl = —3628.598
to —2873.577) (Figure 3A), indicating that individuals with less
change in the mPFC-insula connectivity showed reduced social
responsiveness tendency. We found that the connectivity length
difference of the insula switch was also significantly predictive of
the SRS score (i.e., insula-FPN minus insula-mPFC; B = —0.837,
SE = 0.248, p < .01, 95% Cl = —1.292 to —0.324) (Figure 3B),
that is, individuals with a higher social tendency score exhibit
more frequently coupled insula connectivity with the FPN even
during the resting state. To sum, these results not only indicate
possible underlying neural mechanisms of the reduced social
tendencies in ASD but also support the suggested circuit model
regarding social behavior in general. However, we did not find
such significant relationships between participants’ ADOS
score and their circuit variability (p = .320, 95% Cl = —7.942 X
107° to 2.464 X 107%) and length difference (p = .337, 95%
Cl = —0.562 to 0.160).

DISCUSSION

In this study, we examined how the DMN and SN interacted in
individuals. We found that the mPFC, a core DMN region,
shows a stronger coupling with the insula, a core SN region, in
the ASD group. We further found that the mPFC-insula
coupling was stronger and more stable in the ASD group
than in the TD group at the dynamic level of functional con-
nectivity. Finally, results from the SNDA showed that the TD
group had relatively frequent coupling between the FPN-insula
and longer coupling durations between the FPN-insula
compared with the ASD group. Importantly, we found that
this reduction of configuration switches in the brain is asso-
ciated with reduced social responsiveness, indicating that
excessive mPFC-insula coupling may lead individuals to
reduce their attention to the outside world and, consequently,
social interest. Our findings are important in two ways. First,
the findings are consistent with those of previous studies
demonstrating the importance of the DMN and SN in the brains
of those with ASD (14,17,20,49,50). It suggests that research
into the mechanisms of ASD must also look beyond a single
region or network. Second, by adopting the semblance-based
time-frequency analysis and the SN-based network switching
model (20), we have provided more detailed information on
how these three intrinsic networks are synced and desynced
across time, allowing this research to test the SN-based
switching model more interactively.

This study extends previous findings by providing evidence
that ASD exhibits limited mPFC-insula connectivity fluctua-
tions over time, which may lead to reduced spontaneous
attention shifts toward the environment. According to recent
models (6), the SN inhibits DMN activity (i.e., functional
decoupling) to change attentional orientation from an internal
self-processing state to the external environment. Thus, the
insula, as a core node of the SN, can exhibit dynamic prop-
erties to influence neural configurations spontaneously even
without external stimuli being present (22,23) to continuously
monitor for changes in the surrounding environment. There-
fore, the stability of the mPFC-insula connections found in the
ASD group can explain why individuals with ASD exhibit more
internally oriented cognition and are less responsive to their
external surroundings. However, this study only used intrinsic
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brain activity measured using the resting-state data to explore
the mPFC-insula connectivity fluctuation. Although recent
studies have consistently suggested that intrinsic neural ac-
tivity is the backbone of the individual’s psychosocial and
behavioral tendencies (51), predicting task performance (52)
and psychosocial behaviors (53,54), it is worth doing task-
based fMRI studies in the future to examine whether this
intrinsic spontaneous fluctuation in the mPFC-insula connec-
tion can lead to difficulties of attentional shifting and social
cognition in ASD in the context of task-based measurement.

The strong relationship between mPFC-insula connectivity
and the SRS score is worth noting. Previous clinical studies
showed that the SRS can measure the degree of social deficits
experienced by individuals with ASD (55-57) and attention-
deficit/hyperactivity disorder (ADHD) (58) and by children
from families exhibiting subthreshold autistic traits (59) or by
those who have a sibling with autism or another pervasive
development disorder (60). Although the SRS is mainly
developed to evaluate the social characteristics of individuals
with ASD, it is also used to identify individuals with limited
social environment and functioning (46). For example, studies
used the SRS to evaluate social characteristics of children with
cardiac disease (61), in utero endocrine disrupter exposure
(62), social anxiety disorders (63), an extra X chromosome (64),
and other pervasive developmental disorders (60). That is, the
utility of SRS is applicable to typical/subclinical populations
(46,65,66). Thus, we examined the relationship between brain
connectivity features and social tendencies using the SRS as a
continuous variable across all samples. In this context, our
findings of the relationship between circuit characteristics and
social behavior may imply that the mPFC-insula circuit
mechanism is a factor influencing the individuals’ social-
cognitive attention. Although the SRS scores across samples
overlap when the distributions are plotted for each group
separately, the middle range of the SRS (see the SRS score
distribution in Figure 3; around 50) has relatively few samples.
Thus, such a relationship between the SRS and brain features
reported here requires cautious interpretation because we
cannot fully eliminate the potential group effects. Finally, the
results need to be referenced as an exploratory observation.
Future studies may include ADHD and other clinical/subclinical
populations with social or attentional deficits to explore a more
comprehensive relationship between mPFC-insula connectiv-
ity and social-cognitive attention.®

It is still unclear what causes hyperconnectivity between the
SN and the DMN in ASD. It may be due to either a limited
sensitivity in detecting sensory changes or increased internally
oriented cognition. If this excessive coupling is due to
dysfunction of the SN, the lack of responsiveness to external
stimuli observed in people with ASD could be an issue of initial
sensory processing failing to prioritize external stimuli (4-6,17).

3As another autism diagnostic tool, we also examined the effect of
the ADOS and found nonsignificant results. Nevertheless, the
results were not surprising because ADOS scores were only
collected for the ASD group, and the analysis was not per-
formed along with the methods with which we examined
mPFC-insula connectivity (i.e., including both groups). More-
over, there was no significant relationship found between the
SRS and ADOS (r = 0.043).
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Alternatively, it is possible that excessive coupling is due to
DMN hyperactivation (14,15), which hinders the SN’s ability to
influence the switching of network configurations from the
internally oriented mode (i.e., DMN) to the external attention
mode (i.e., FPN). However, recent developmental studies
provide evidence that the SN impairments may be the main
cause (19). Studies found that older adults overinvest mental
resources to process their external surroundings (i.e., the exact
opposite case compared with ASD), suggesting that the failure
of the SN in switching neural configuration from the DMN to
the executive networks is the main source of older adults’
increased distractibility. Similarly, studies involving children
with ADHD imply that the impaired SN prioritizes the pro-
cessing of external stimuli and leads children to be more prone
to distraction by sensory inputs (67). Thus, it is more plausible
to consider that the hyperactive DMN in ASD stems from im-
pairments in the SN, which inhibits one from reorienting their
processing focus from internal to external at the initial sensory
step. However, given the nature of the resting-state blood
oxygen level-dependent signal, the connectivity causality
investigation is limited. Thus, a future study that includes social
interactive features seems necessary.

The literature on ASD, however, reports mixed patterns of
SN-related functional connectivity (6,17,68). An increased or
decreased connectivity strength may depend on other factors,
such as age-related effects, symptom severity, or medication
status (11,17,69-71). In addition, inconsistent outcomes may
result from divergent behavioral phenotypes across ASD and
its comorbidities. Although atypical sensory features are
common in ASD, the profiles of these vary across individuals,
and sometimes within individuals, depending on the context
(72). Nevertheless, an important limitation of the study is that
the information in this dataset is insufficient to control or ac-
count for such divergence among symptoms. A future study
with sufficient and balanced sample sizes in each de-
mographic or phenotype group would help extend our findings.

In conclusion, these findings highlight deficits in network-
wise configuration changes as a possible factor underpinning
attentional impairments in ASD. The findings provide a
mechanistic perspective that ASD symptoms might be asso-
ciated with atypical dynamic brain configurations between in-
dependent intrinsic networks rather than, or in addition to, an
atypical reactivity in a single region or network (73-75), which
is a more integrated understanding of how different networks
contribute to atypical behaviors in ASD. Furthermore, this
study introduces a useful and novel approach not only for
understanding individuals with ASD but also for furthering our
understanding of the neural underpinnings of various neuro-
developmental and neuropsychiatric disorders with inattention
symptoms such as ADHD (76,77).
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